125 research outputs found

    Laser irradiated foam targets: absorption and radiative properties

    Get PDF
    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminium targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target

    Diagnostic Methodologies of Laser-Initiated 11B(p,α)2α Fusion Reactions

    Get PDF
    The detection of the ionic products of low-rate fusion reactions, and in particular of the 11B(p,α)2α, is one of the recognized main problems in experiments where these reactions are initiated by tailored interaction of intense and high-energy lasers with matter. A thorough description of this important issue, with a critical comparison of the diagnostic opportunities, is indeed so far. In this work, we describe the common diagnostic methodologies used for the detection of the alpha particles generated by the 11B(p,α)2α reaction and, for each, we outline advantages and limitations, with considerations that can also be applied to other low-rate fusion reactions. We show here that, in general, the univocal characterization of the α products coming from this reaction can be achieved by the simultaneous use of several diagnostic tools placed in close proximity

    Risk factors associated with severe hospital burden of COVID-19 disease in Regione Lombardia: a cohort study.

    Get PDF
    BACKGROUND: Understanding the risk factors associated with hospital burden of COVID-19 is crucial for healthcare planning for any future waves of infection. METHODS: An observational cohort study is performed, using data on all PCR-confirmed cases of COVID-19 in Regione Lombardia, Italy, during the first wave of infection from February-June 2020. A multi-state modelling approach is used to simultaneously estimate risks of progression through hospital to final outcomes of either death or discharge, by pathway (via critical care or not) and the times to final events (lengths of stay). Logistic and time-to-event regressions are used to quantify the association of patient and population characteristics with the risks of hospital outcomes and lengths of stay respectively. RESULTS: Risks of severe outcomes such as ICU admission and mortality have decreased with month of admission (for example, the odds ratio of ICU admission in June vs March is 0.247 [0.120-0.508]) and increased with age (odds ratio of ICU admission in 45-65 vs 65 + age group is 0.286 [0.201-0.406]). Care home residents aged 65 + are associated with increased risk of hospital mortality and decreased risk of ICU admission. Being a healthcare worker appears to have a protective association with mortality risk (odds ratio of ICU mortality is 0.254 [0.143-0.453] relative to non-healthcare workers) and length of stay. Lengths of stay decrease with month of admission for survivors, but do not appear to vary with month for non-survivors. CONCLUSIONS: Improvements in clinical knowledge, treatment, patient and hospital management and public health surveillance, together with the waning of the first wave after the first lockdown, are hypothesised to have contributed to the reduced risks and lengths of stay over time

    Differential redox state contributes to sex disparities in the response to influenza virus infection in male and female mice

    Get PDF
    Influenza virus replicates intracellularly exploiting several pathways involved in the regulation of host responses. The outcome and the severity of the infection are thus strongly conditioned by multiple host factors, including age, sex, metabolic, and redox conditions of the target cells. Hormones are also important determinants of host immune responses to influenza and are recently proposed in the prophylaxis and treatment. This study shows that female mice are less susceptible than males to mouse-adapted influenza virus (A/PR8/H1N1). Compared with males, PR8-infected females display higher survival rate (+36%), milder clinical disease, and less weight loss. They also have milder histopathological signs, especially free alveolar area is higher than that in males, even if pro-inflammatory cytokine production shows slight differences between sexes; hormone levels, moreover, do not vary significantly with infection in our model. Importantly, viral loads (both in terms of viral M1 RNA copies and tissue culture infectious dose 50%) are lower in PR8-infected females. An analysis of the mechanisms contributing to sex disparities observed during infection reveals that the female animals have higher total antioxidant power in serum and their lungs are characterized by increase in (i) the content and biosynthesis of glutathione, (ii) the expression and activity of antioxidant enzymes (peroxiredoxin 1, catalase, and glutathione peroxidase), and (iii) the expression of the anti-apoptotic protein Bcl-2. By contrast, infected males are characterized by high expression of NADPH oxidase 4 oxidase and phosphorylation of p38 MAPK, both enzymes promoting viral replication. All these factors are critical for cell homeostasis and susceptibility to infection. Reappraisal of the importance of the host cell redox state and sex-related effects may be useful in the attempt to develop more tailored therapeutic interventions in the fight against influenza

    Vineyard establishment under exacerbated summer stress: effects of mycorrhization on rootstock agronomical parameters, leaf element composition and root-associated bacterial microbiota

    Get PDF
    Aims Climate change imposes adaptation of viticulture in risk areas, such as the Mediterranean. Mycorrhization is a valid tool to reduce the impact of the expected temperature/drought increase. Aim of this work was to test the effects of mycorrhization on grapevine vegetative growth, element composition of soil/leaves, and microbiota of bulk soil/rhizosphere/endorhiza, in the field, under exacerbated summer stress conditions obtained by planting the rootstocks in June. Methods 118 rooted cuttings of 1103-Paulsen (Vitis berlandieri × Vitis rupestris) were planted in Salento (Apulia, Southern Italy); about half of them were mycorrhized. Leaf Area Index, shoot growth and survival rate were monitored across two growing seasons. Leaf/shoot weight, chemical analysis of 25 elements, and 16S rRNA gene metabarcoding of bulk soil/rhizosphere/endorhiza were performed on subsamples. Results Mycorrhized plants showed significantly higher survival rate and growth, and accumulated significantly higher amounts of 18 elements. 27 endorhizal OTUs (representing ~20% of total sequences) were differently distributed (20 OTUs more abundant in mycorrhized plants); in the rhizosphere, instead, 12 OTUs (~2.5% of total sequences) were differently distributed. A few Actinobacterial OTUs were enriched by mycorrhization in the root endosphere; the same OTUs were the most correlated with the chemical elements, suggesting a role in element dynamics. These OTUs were not hub taxa of the co-occurrence network. Conclusions This work shed light onto the interactions between mycorrhiza and microbiome, in the context of plant element dynamics, which is useful to identify potential target candidates for biotechnological applications, thus moving towards a more sustainable, ecosystem-based viticulture

    Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis

    Get PDF
    In any research field, data access and data integration are major challenges that even large, well-established consortia face. Although data sharing initiatives are increasing, joint data analyses on nutrition and microbiomics in health and disease are still scarce. We aimed to identify observational studies with data on nutrition and gut microbiome composition from the Intestinal Microbiomics (INTIMIC) Knowledge Platform following the findable, accessible, interoperable, and reusable (FAIR) principles. An adapted template from the European Nutritional Phenotype Assessment and Data Sharing Initiative (ENPADASI) consortium was used to collect microbiome-specific information and other related factors. In total, 23 studies (17 longitudinal and 6 cross-sectional) were identified from Italy (7), Germany (6), Netherlands (3), Spain (2), Belgium (1), and France (1) or multiple countries (3). Of these, 21 studies collected information on both dietary intake (24 h dietary recall, food frequency questionnaire (FFQ), or Food Records) and gut microbiome. All studies collected stool samples. The most often used sequencing platform was Illumina MiSeq, and the preferred hypervariable regions of the 16S rRNA gene were V3-V4 or V4. The combination of datasets will allow for sufficiently powered investigations to increase the knowledge and understanding of the relationship between food and gut microbiome in health and disease

    Decreasing hospital burden of COVID-19 during the first wave in Regione Lombardia: an emergency measures context

    Get PDF
    Abstract: Background: The aim of this study is to quantify the hospital burden of COVID-19 during the first wave and how it changed over calendar time; to interpret the results in light of the emergency measures introduced to manage the strain on secondary healthcare. Methods: This is a cohort study of hospitalised confirmed cases of COVID-19 admitted from February–June 2020 and followed up till 17th July 2020, analysed using a mixture multi-state model. All hospital patients with confirmed COVID-19 disease in Regione Lombardia were involved, admitted from February–June 2020, with non-missing hospital of admission and non-missing admission date. Results: The cohort consists of 40,550 patients hospitalised during the first wave. These patients had a median age of 69 (interquartile range 56–80) and were more likely to be men (60%) than women (40%). The hospital-fatality risk, averaged over all pathways through hospital, was 27.5% (95% CI 27.1–28.0%); and steadily decreased from 34.6% (32.5–36.6%) in February to 7.6% (6.3–10.6%) in June. Among surviving patients, median length of stay in hospital was 11.8 (11.6–12.3) days, compared to 8.1 (7.8–8.5) days in non-survivors. Averaged over final outcomes, median length of stay in hospital decreased from 21.4 (20.5–22.8) days in February to 5.2 (4.7–5.8) days in June. Conclusions: The hospital burden, in terms of both risks of poor outcomes and lengths of stay in hospital, has been demonstrated to have decreased over the months of the first wave, perhaps reflecting improved treatment and management of COVID-19 cases, as well as reduced burden as the first wave waned. The quantified burden allows for planning of hospital beds needed for current and future waves of SARS-CoV-2 i
    • …
    corecore